Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
2.
Clin Infect Dis ; 78(3): 594-602, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37647517

ABSTRACT

BACKGROUND: To protect healthcare workers (HCWs) from the consequences of disease due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the risk factors that drive exposure and infection within hospitals. Insufficient consideration of key socioeconomic variables is a limitation of existing studies that can lead to bias and residual confounding of proposed risk factors for infection. METHODS: The Co-STARs study prospectively enrolled 3679 HCWs between April 2020 and September 2020. We used multivariate logistic regression to comprehensively characterize the demographic, occupational, socioeconomic, and environmental risk factors for SARS-CoV-2 seropositivity. RESULTS: After adjusting for key confounders, relative household overcrowding (odds ratio [OR], 1.4 [95% confidence interval {CI}, 1.1-1.9]; P = .006), Black, Black British, Caribbean, or African ethnicity (OR, 1.7 [95% CI, 1.2-2.3]; P = .003), increasing age (ages 50-60 years: OR, 1.8 [95% CI, 1.3-2.4]; P < .001), lack of access to sick pay (OR, 1.8 [95% CI, 1.3-2.4]; P < .001). CONCLUSIONS: Socioeconomic and demographic factors outside the hospital were the main drivers of infection and exposure to SARS-CoV-2 during the first wave of the pandemic in an urban pediatric referral hospital. Overcrowding and out-of-hospital SARS-CoV-2 contact are less amenable to intervention. However, lack of access to sick pay among externally contracted staff is more easily rectifiable. Our findings suggest that providing easier access to sick pay would lead to a decrease in SARS-CoV-2 transmission and potentially that of other infectious diseases in hospital settings. CLINICAL TRIALS REGISTRATION: NCT04380896.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Middle Aged , COVID-19/epidemiology , Demography , Health Personnel , Hospitals , Prospective Studies , Risk Factors , Socioeconomic Factors , United Kingdom/epidemiology , Black People , Caribbean People , African People
3.
Blood ; 143(2): 118-123, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37647647

ABSTRACT

ABSTRACT: CD19-negative relapse is a leading cause of treatment failure after chimeric antigen receptor (CAR) T-cell therapy for acute lymphoblastic leukemia. We investigated a CAR T-cell product targeting CD19 and CD22 generated by lentiviral cotransduction with vectors encoding our previously described fast-off rate CD19 CAR (AUTO1) combined with a novel CD22 CAR capable of effective signaling at low antigen density. Twelve patients with advanced B-cell acute lymphoblastic leukemia were treated (CARPALL [Immunotherapy with CD19/22 CAR Redirected T Cells for High Risk/Relapsed Paediatric CD19+ and/or CD22+ Acute Lymphoblastic Leukaemia] study, NCT02443831), a third of whom had failed prior licensed CAR therapy. Toxicity was similar to that of AUTO1 alone, with no cases of severe cytokine release syndrome. Of 12 patients, 10 (83%) achieved a measurable residual disease (MRD)-negative complete remission at 2 months after infusion. Of 10 responding patients, 5 had emergence of MRD (n = 2) or relapse (n = 3) with CD19- and CD22-expressing disease associated with loss of CAR T-cell persistence. With a median follow-up of 8.7 months, there were no cases of relapse due to antigen-negative escape. Overall survival was 75% (95% confidence interval [CI], 41%-91%) at 6 and 12 months. The 6- and 12-month event-free survival rates were 75% (95% CI, 41%-91%) and 60% (95% CI, 23%-84%), respectively. These data suggest dual targeting with cotransduction may prevent antigen-negative relapse after CAR T-cell therapy.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Child , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/genetics , Recurrence , Antigens, CD19 , T-Lymphocytes , Sialic Acid Binding Ig-like Lectin 2
4.
Mucosal Immunol ; 17(1): 124-136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007005

ABSTRACT

SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , Antigens, Viral , Immunoglobulin A , SARS-CoV-2 , Vimentin
5.
Nucleic Acids Res ; 52(D1): D1333-D1346, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953324

ABSTRACT

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.


Subject(s)
Biological Ontologies , Humans , Phenotype , Genomics , Algorithms , Rare Diseases
6.
Front Immunol ; 14: 1231749, 2023.
Article in English | MEDLINE | ID: mdl-37744344

ABSTRACT

We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1ß), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon ß (IFN-ß); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.


Subject(s)
Anemia , Leukocytes, Mononuclear , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Splenomegaly/genetics , Interleukin-6 , Neuroinflammatory Diseases , Anemia/genetics , Mutation
7.
J Clin Immunol ; 43(7): 1611-1622, 2023 10.
Article in English | MEDLINE | ID: mdl-37316763

ABSTRACT

The transcription factor STAT6 (Signal Transducer and Activator of Transcription 6) is a key regulator of Th2 (T-helper 2) mediated allergic inflammation via the IL-4 (interleukin-4) JAK (Janus kinase)/STAT signalling pathway. We identified a novel heterozygous germline mutation STAT6 c.1255G > C, p.D419H leading to overactivity of IL-4 JAK/STAT signalling pathway, in a kindred affected by early-onset atopic dermatitis, food allergy, eosinophilic asthma, anaphylaxis and follicular lymphoma. STAT6 D419H expression and functional activity were compared with wild type STAT6 in transduced HEK293T cells and to healthy control primary skin fibroblasts and peripheral blood mononuclear cells (PBMC). We observed consistently higher STAT6 levels at baseline and higher STAT6 and phosphorylated STAT6 following IL-4 stimulation in D419H cell lines and primary cells compared to wild type controls. The pSTAT6/STAT6 ratios were unchanged between D419H and control cells suggesting that elevated pSTAT6 levels resulted from higher total basal STAT6 expression. The selective JAK1/JAK2 inhibitor ruxolitinib reduced pSTAT6 levels in D419H HEK293T cells and patient PBMC. Nuclear staining demonstrated increased STAT6 in patient fibroblasts at baseline and both STAT6 and pSTAT6 after IL-4 stimulation. We also observed higher transcriptional upregulation of downstream genes (XBP1 and EPAS1) in patient PBMC. Our study confirms STAT6 gain of function (GOF) as a novel monogenetic cause of early onset atopic disease. The clinical association of lymphoma in our kindred, along with previous data linking somatic STAT6 D419H mutations to follicular lymphoma suggest that patients with STAT6 GOF disease may be at higher risk of lymphomagenesis.245 words.


Subject(s)
Interleukin-4 , Lymphoma, Follicular , Humans , Interleukin-4/genetics , Interleukin-4/metabolism , Leukocytes, Mononuclear/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Gain of Function Mutation , HEK293 Cells , Janus Kinases
8.
N Engl J Med ; 389(10): 899-910, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37314354

ABSTRACT

BACKGROUND: Cytidine deamination that is guided by clustered regularly interspaced short palindromic repeats (CRISPR) can mediate a highly precise conversion of one nucleotide into another - specifically, cytosine to thymine - without generating breaks in DNA. Thus, genes can be base-edited and rendered inactive without inducing translocations and other chromosomal aberrations. The use of this technique in patients with relapsed childhood T-cell leukemia is being investigated. METHODS: We used base editing to generate universal, off-the-shelf chimeric antigen receptor (CAR) T cells. Healthy volunteer donor T cells were transduced with the use of a lentivirus to express a CAR with specificity for CD7 (CAR7), a protein that is expressed in T-cell acute lymphoblastic leukemia (ALL). We then used base editing to inactivate three genes encoding CD52 and CD7 receptors and the ß chain of the αß T-cell receptor to evade lymphodepleting serotherapy, CAR7 T-cell fratricide, and graft-versus-host disease, respectively. We investigated the safety of these edited cells in three children with relapsed leukemia. RESULTS: The first patient, a 13-year-old girl who had relapsed T-cell ALL after allogeneic stem-cell transplantation, had molecular remission within 28 days after infusion of a single dose of base-edited CAR7 (BE-CAR7). She then received a reduced-intensity (nonmyeloablative) allogeneic stem-cell transplant from her original donor, with successful immunologic reconstitution and ongoing leukemic remission. BE-CAR7 cells from the same bank showed potent activity in two other patients, and although fatal fungal complications developed in one patient, the other patient underwent allogeneic stem-cell transplantation while in remission. Serious adverse events included cytokine release syndrome, multilineage cytopenia, and opportunistic infections. CONCLUSIONS: The interim results of this phase 1 study support further investigation of base-edited T cells for patients with relapsed leukemia and indicate the anticipated risks of immunotherapy-related complications. (Funded by the Medical Research Council and others; ISRCTN number, ISRCTN15323014.).


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Female , Humans , Antigens, CD19 , Antigens, CD7 , CD52 Antigen , Hematopoietic Stem Cell Transplantation/adverse effects , Immunotherapy, Adoptive/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/genetics , Recurrence , Stem Cell Transplantation , T-Lymphocytes
9.
Front Immunol ; 14: 1186575, 2023.
Article in English | MEDLINE | ID: mdl-37377976

ABSTRACT

Background: Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is associated with biallelic variants in SGPL1, comprising a multisystemic disease characterized by steroid resistant nephrotic syndrome, primary adrenal insufficiency, neurological problems, skin abnormalities and immunodeficiency in described cases. Signal transducer and activator of transcription 1 (STAT1) plays an important role in orchestrating an appropriate immune response through JAK-STAT pathway. Biallelic STAT1 loss of function (LOF) variants lead to STAT1 deficiency with a severe phenotype of immunodeficiency with increased frequency of infections and poor outcome if untreated. Case presentation: We report novel homozygous SGPL1 and STAT1 variants in a newborn of Gambian ethnicity with clinical features of SPLIS and severe combined immunodeficiency. The patient presented early in life with nephrotic syndrome, severe respiratory infection requiring ventilation, ichthyosis, and hearing loss, with T-cell lymphopenia. The combination of these two conditions led to severe combined immunodeficiency with inability to clear respiratory tract infections of viral, fungal, and bacterial nature, as well as severe nephrotic syndrome. The child sadly died at 6 weeks of age despite targeted treatments. Conclusion: We report the finding of two novel, homozygous variants in SGPL1 and STAT1 in a patient with a severe clinical phenotype and fatal outcome early in life. This case highlights the importance of completing the primary immunodeficiency genetic panel in full to avoid missing a second diagnosis in other patients presenting with similar severe clinical phenotype early in life. For SPLIS no curative treatment is available and more research is needed to investigate different treatment modalities. Hematopoietic stem cell transplantation (HSCT) shows promising results in patients with autosomal recessive STAT1 deficiency. For this patient's family, identification of the dual diagnosis has important implications for future family planning. In addition, future siblings with the familial STAT1 variant can be offered curative treatment with HSCT.


Subject(s)
Immunologic Deficiency Syndromes , Nephrotic Syndrome , Severe Combined Immunodeficiency , Humans , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Janus Kinases/metabolism , Nephrotic Syndrome/genetics , Signal Transduction , STAT Transcription Factors/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Infant, Newborn
10.
Lancet Gastroenterol Hepatol ; 8(3): 271-286, 2023 03.
Article in English | MEDLINE | ID: mdl-36634696

ABSTRACT

Genomic medicine enables the identification of patients with rare or ultra-rare monogenic forms of inflammatory bowel disease (IBD) and supports clinical decision making. Patients with monogenic IBD frequently experience extremely early onset of treatment-refractory disease, with complex extraintestinal disease typical of immunodeficiency. Since more than 100 monogenic disorders can present with IBD, new genetic disorders and variants are being discovered every year, and as phenotypic expression of the gene defects is variable, adaptive genomic technologies are required. Monogenic IBD has become a key area to establish the concept of precision medicine. Clear guidance and standardised, affordable applications of genomic technologies are needed to implement exome or genome sequencing in clinical practice. This joint British Society of Gastroenterology and British Society of Paediatric Gastroenterology, Hepatology and Nutrition guideline aims to ensure that testing resources are appropriately applied to maximise the benefit to patients on a national scale, minimise health-care disparities in accessing genomic technologies, and optimise resource use. We set out the structural requirements for genomic medicine as part of a multidisciplinary team approach. Initiation of genomic diagnostics should be guided by diagnostic criteria for the individual patient, in particular the age of IBD onset and the patient's history, and potential implications for future therapies. We outline the diagnostic care pathway for paediatric and adult patients. This guideline considers how to handle clinically actionable findings in research studies and the impact of consumer-based genomics for monogenic IBD. This document was developed by multiple stakeholders, including UK paediatric and adult gastroenterology physicians, immunologists, transplant specialists, clinical geneticists, scientists, and research leads of UK genetic programmes, in partnership with patient representatives of several IBD and rare disease charities.


Subject(s)
Gastroenterology , Inflammatory Bowel Diseases , Humans , Child , Adult , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , Nutritional Status , Genomics
11.
J Crohns Colitis ; 17(1): 49-60, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-35907265

ABSTRACT

BACKGROUND AND AIMS: Inflammatory bowel diseases [IBD] have a complex polygenic aetiology. Rare genetic variants can cause monogenic intestinal inflammation. The impact of chromosomal aberrations and large structural abnormalities on IBD susceptibility is not clear. We aimed to comprehensively characterise the phenotype and prevalence of patients with IBD who possess rare numerical and structural chromosomal abnormalities. METHODS: We performed a systematic literature search of databases PubMed and Embase; and analysed gnomAD, Clinvar, the 100 000 Genomes Project, and DECIPHER databases. Further, we analysed international paediatric IBD cohorts to investigate the role of IL2RA duplications in IBD susceptibility. RESULTS: A meta-analysis suggests that monosomy X [Turner syndrome] is associated with increased expressivity of IBD that exceeds the population baseline (1.86%, 95% confidence interval [CI] 1.48 to 2.34%) and causes a younger age of IBD onset. There is little evidence that Klinefelter syndrome, Trisomy 21, Trisomy 18, mosaic Trisomy 9 and 16, or partial trisomies contribute to IBD susceptibility. Copy number analysis studies suggest inconsistent results. Monoallelic loss of X-linked or haploinsufficient genes is associated with IBD by hemizygous or heterozygous deletions, respectively. However, haploinsufficient gene deletions are detected in healthy reference populations, suggesting that the expressivity of IBD might be overestimated. One duplication that has previously been identified as potentially contributing to IBD risk involves the IL2RA/IL15R loci. Here we provide additional evidence that a microduplication of this locus may predispose to very-early-onset IBD by identifying a second case in a distinct kindred. However, the penetrance of intestinal inflammation in this genetic aberration is low [<2.6%]. CONCLUSIONS: Turner syndrome is associated with increased susceptibility to intestinal inflammation. Duplication of the IL2RA/IL15R loci may contribute to disease risk.


Subject(s)
Inflammatory Bowel Diseases , Turner Syndrome , Humans , DNA Copy Number Variations , Turner Syndrome/complications , Inflammatory Bowel Diseases/genetics , Chromosome Aberrations , Inflammation/complications
12.
Cytotherapy ; 25(1): 82-93, 2023 01.
Article in English | MEDLINE | ID: mdl-36220712

ABSTRACT

BACKGROUND AIMS: Delayed immune reconstitution is a major challenge after matched unrelated donor (MUD) stem cell transplant (SCT). In this randomized phase 2 multi-center trial, Adoptive Immunotherapy with CD25/71 allodepleted donor T cells to improve immunity after unrelated donor stem cell transplant (NCT01827579), the authors tested whether allodepleted donor T cells (ADTs) can safely be used to improve immune reconstitution after alemtuzumab-based MUD SCT for hematological malignancies. METHODS: Patients received standard of care or up to three escalating doses of ADTs generated through CD25+/CD71+ immunomagnetic depletion. The primary endpoint of the study was circulating CD3+ T-cell count at 4 months post-SCT. Twenty-one patients were treated, 13 in the ADT arm and eight in the control arm. RESULTS: The authors observed a trend toward improved CD3+ T-cell count at 4 months in the ADT arm versus the control arm (230/µL versus 145/µL, P = 0.18), and three ADT patients achieved normal CD3+ T-cell count at 4 months (>700/µL). The rates of significant graft-versus-host disease (GVHD) were comparable in both cohorts, with grade ≥2 acute GVHD in seven of 13 and four of eight patients and chronic GVHD in three of 13 and three of eight patients in the ADT and control arms, respectively. CONCLUSIONS: These data suggest that adoptive transfer of ADTs is safe, but that in the MUD setting the benefit in terms of T-cell reconstitution is limited. This approach may be of more use in the context of more rigorous T-cell depletion.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , T-Lymphocytes , Unrelated Donors , Hematopoietic Stem Cell Transplantation/adverse effects , Immunotherapy
14.
Front Immunol ; 13: 998967, 2022.
Article in English | MEDLINE | ID: mdl-36203604

ABSTRACT

There is an important unmet clinical need for fast turnaround next generation sequencing (NGS) to aid genetic diagnosis of patients with acute and sometimes catastrophic inflammatory presentations. This is imperative for patients who require precise and targeted treatment to prevent irreparable organ damage or even death. Acute and severe hyper- inflammation may be caused by primary immunodeficiency (PID) with immune dysregulation, or more typical autoinflammatory diseases in the absence of obvious immunodeficiency. Infectious triggers may be present in either immunodeficiency or autoinflammation. We compiled a list of 25 genes causing monogenetic immunological diseases that are notorious for their acute first presentation with fulminant inflammation and which may be amenable to specific treatment, including hemophagocytic lymphohistiocytosis (HLH); and autoinflammatory diseases that can present with early-onset stroke or other irreversible neurological inflammatory complications. We designed and validated a pipeline that enabled return of clinically actionable results in hours rather than weeks: the Rapid Autoinflammation Panel (RAP). We demonstrated accuracy of this new pipeline, with 100% sensitivity and 100% specificity. Return of results to clinicians was achieved within 48-hours from receiving the patient's blood or saliva sample. This approach demonstrates the potential significant diagnostic impact of NGS in acute medicine to facilitate precision medicine and save "life or limb" in these critical situations.


Subject(s)
Hereditary Autoinflammatory Diseases , Immune System Diseases , Immunologic Deficiency Syndromes , Hereditary Autoinflammatory Diseases/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunologic Deficiency Syndromes/genetics , Inflammation/genetics
15.
Cell Rep Methods ; 2(9): 100279, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35975199

ABSTRACT

Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination.


Subject(s)
Antibody Formation , COVID-19 , Humans , Proteomics , SARS-CoV-2/genetics , Immunoglobulin G , Antibodies, Viral
16.
J Pediatr ; 250: 67-74.e1, 2022 11.
Article in English | MEDLINE | ID: mdl-35835228

ABSTRACT

OBJECTIVES: To investigate the prevalence of hemophagocytic lymphohistiocytosis (HLH) syndrome in pediatric acute liver failure (PALF) of infancy and assess the diagnostic role of rapid immunologic tests, genotype/phenotype correlations, and clinical outcomes. STUDY DESIGN: We retrospectively analyzed 78 children with PALF aged <24 months referred over almost 2 decades. The studied patients with a phenotype of HLH syndrome had a comprehensive immunologic workup, including additional genetic analysis for primary immunologic causes. RESULTS: Thirty of the 78 children had the HLH phenotype and underwent genetic assessment, which demonstrated positive findings in 19 (63.3%), including 9 (30%) with biallelic primary HLH mutations and 10 (33.3%) with heterozygous mutations and/or polymorphisms. The most common form of primary HLH was familial hemophagocytic lymphohistiocytosis (FHL)-2, diagnosed in 6 children, 4 of whom had a c.50delT (p.Leu17ArgfsTer34) mutation in the PRF1 gene. Three patients with primary HLH received genetic diagnoses of FHL-3, Griscelli syndrome, and LRBA (lipopolysaccharide-responsive vesicle trafficking, beach- and anchor-containing) protein deficiency. Overall mortality in the series was 52.6% (10 of 19), and mortality in children with a documented biallelic pathogenic HLH mutation (ie, primary HLH) was 66.6% (6 of 9). Two children underwent liver transplantation, and 4 children underwent emergency hematopoietic stem cell transplantation; all but 1 child survived medium term. CONCLUSIONS: Primary HLH can be diagnosed retrospectively in approximately one-third of infants with indeterminate PALF (iPALF) who meet the clinical criteria for HLH, often leading to their death. The most common HLH type in iPALF is FHL-2, caused by biallelic mutations in PRF-1. The clinical relevance of observed heterozygous mutations and variants of uncertain significance requires further investigation. Prompt hematopoietic stem cell transplantation could be life-saving in infants who survive the liver injury.


Subject(s)
Liver Failure, Acute , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/epidemiology , Perforin/genetics , Retrospective Studies , Prevalence , Mutation , Liver Failure, Acute/diagnosis , Liver Failure, Acute/epidemiology , Liver Failure, Acute/etiology , Adaptor Proteins, Signal Transducing/genetics
17.
J Environ Qual ; 51(5): 990-1002, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35819079

ABSTRACT

Within the north-temperate zone, winters can be long and are associated with conditions of low temperature and potential for sediment freezing. There are critical gaps in our knowledge of biogeochemical cycling during winter and inadequate knowledge of how warming winters and changing snowpack might affect biogeochemistry. Here, we assessed the impacts of sediment freeze-thaw cycling and nitrate amendment on denitrification rates in the littoral fringe of four urban wetlands. We demonstrate the potential for experimental sediment freezing to suppress denitrification, although freezing effects were not observed at all sites. Multiple freeze-thaw cycles were assessed, and, although subsequent cycles may affect denitrification, the first instance of our experimental freezing seems the most critical. Although this work demonstrates potential sensitivity of wetland denitrification rates to changing winter conditions, we note nitrate availability has a larger impact upon denitrification rates. This suggests nitrification rates and changing nitrate loads may be more important determinants of nitrate retention than sediment freeze-thaw history. Although there has been great interest in hot spots and moments for biogeochemical cycling, we suggest there is similar need to understand cold spots and moments, as evidenced here. This is particularly important where cold moments may correspond with critical periods of nitrate transport, such as snowmelt.


Subject(s)
Denitrification , Wetlands , Freezing , Geologic Sediments , Nitrates/analysis , Nitrogen
19.
Sci Rep ; 12(1): 10517, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732870

ABSTRACT

Sensitive serological testing is essential to estimate the proportion of the population exposed or infected with SARS-CoV-2, to guide booster vaccination and to select patients for treatment with anti-SARS-CoV-2 antibodies. The performance of serological tests is usually evaluated at 14-21 days post infection. This approach fails to take account of the important effect of time on test performance after infection or exposure has occurred. We performed parallel serological testing using 4 widely used assays (a multiplexed SARS-CoV-2 Nucleoprotein (N), Spike (S) and Receptor Binding Domain assay from Meso Scale Discovery (MSD), the Roche Elecsys-Nucleoprotein (Roche-N) and Spike (Roche-S) assays and the Abbott Nucleoprotein assay (Abbott-N) on serial positive monthly samples collected as part of the Co-STARs study ( www.clinicaltrials.gov , NCT04380896) up to 200 days following infection. Our findings demonstrate the considerable effect of time since symptom onset on the diagnostic sensitivity of different assays. Using a time-to-event analysis, we demonstrated that 50% of the Abbott nucleoprotein assays will give a negative result after 175 days (median survival time 95% CI 168-185 days), compared to the better performance over time of the Roche Elecsys nucleoprotein assay (93% survival probability at 200 days, 95% CI 88-97%). Assays targeting the spike protein showed a lower decline over the follow-up period, both for the MSD spike assay (97% survival probability at 200 days, 95% CI 95-99%) and the Roche Elecsys spike assay (95% survival probability at 200 days, 95% CI 93-97%). The best performing quantitative Roche Elecsys Spike assay showed no evidence of waning Spike antibody titers over the 200-day time course of the study. We have shown that compared to other assays evaluated, the Abbott-N assay fails to detect SARS-CoV-2 antibodies as time passes since infection. In contrast the Roche Elecsys Spike Assay and the MSD assay maintained a high sensitivity for the 200-day duration of the study. These limitations of the Abbott assay should be considered when quantifying the immune correlates of protection or the need for SARS-CoV-2 antibody therapy. The high levels of maintained detectable neutralizing spike antibody titers identified by the quantitative Roche Elecsys assay is encouraging and provides further evidence in support of long-lasting SARS-CoV-2 protection following natural infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Clinical Studies as Topic , Humans , Nucleoproteins , Sensitivity and Specificity
20.
Eur J Med Genet ; 65(7): 104523, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35595062

ABSTRACT

Otofaciocervical syndrome (OTFCS) is a rare condition associated with short stature, abnormal facial features and conductive hearing loss. OTFCS type 2 (OTFCS) is an autosomal recessive form of this condition with associated T cell deficiency due to biallelic variants in PAX1. We report a female child born to a consanguineous couple with homozygous PAX1 variant. She was diagnosed with T cell immunodeficiency as a neonate and underwent haematopoietic stem cell transplant with cord blood at the age of 5 months. She had facial dysmorphism including ear abnormalities and spinal deformity. We present longitudinal follow-up of the proband who has responded well to the bone marrow transplant to add to the otherwise limited description of this rare condition. This case report expands on the limited literature available on this condition, with only five families reported to date and it further highlights the clinical utility of a rapid gene-agnostic trio exome analysis in identifying a genetic diagnosis in patients who previously underwent genomic testing by gene panel analysis.


Subject(s)
Branchio-Oto-Renal Syndrome , Branchio-Oto-Renal Syndrome/genetics , Diagnosis, Differential , Female , Homozygote , Humans , Infant , Infant, Newborn , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...